Kat Koziar
Agricultural Sciences and Technology Librarian
kkoziar <at> mail.fresnostate.edu
Reproducibility is a foundational principle of the scientific method. Proper management and sharing of research data and methods will aid in verifying and allowing others to reproduce original research. This guide covers tools, resources, and methods to help researchers document and share research data and methods.
Make your research data FAIR. The FAIR principles were developed to help create data, methods, and workflows that can be used easily by researchers, be it someone who wants to replicate or verify research or your future self.
Preamble
One of the grand challenges of data-intensive science is to facilitate knowledge discovery by assisting humans and machines in their discovery of, access to, integration and analysis of, task-appropriate scientific data and their associated algorithms and workflows. Here, we describe FAIR - a set of guiding principles to make data Findable, Accessible, Interoperable, and Reusable.
To be FINDABLE:
F1. (meta)data are assigned a globally unique and eternally persistent identifier.
F2. data are described with rich metadata.
F3. (meta)data are registered or indexed in a searchable resource.
F4. metadata specify the data identifier.
To be ACCESSIBLE:
A1 (meta)data are retrievable by their identifier using a standardized communications protocol.
A1.1 the protocol is open, free, and universally implementable.
A1.2 the protocol allows for an authentication and authorization procedure, where necessary.
A2 metadata are accessible, even when the data are no longer available.
To be INTEROPERABLE:
I1. (meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representation.
I2. (meta)data use vocabularies that follow FAIR principles.
I3. (meta)data include qualified references to other (meta)data.
To be RE-USABLE:
R1. meta(data) have a plurality of accurate and relevant attributes.
R1.1. (meta)data are released with a clear and accessible data usage license.
R1.2. (meta)data are associated with their provenance.
R1.3. (meta)data meet domain-relevant community standards.
Collective Benefit
Data ecosystems shall be designed and function in ways that enable Indigenous Peoples to derive benefit from the data.
Authority to Control
Indigenous Peoples’ rights and interests in Indigenous data must be recognized and their authority to control such data be empowered. Indigenous data governance enables Indigenous Peoples and governing bodies to determine how Indigenous Peoples, as well as Indigenous lands, territories, resources, knowledges and geographical indicators, are represented and identified within data.
Responsibility
Those working with Indigenous data have a responsibility to share how those data are used to support Indigenous Peoples’ self-determination and collective benefit. Accountability requires meaningful and openly available evidence of these efforts and the benefits accruing to Indigenous Peoples.
Ethics
Indigenous Peoples’ rights and wellbeing should be the primary concern at all stages of the data life cycle and across the data ecosystem.